21 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Whole Blood and Tissue Fungal DNA Quantification in the Diagnosis of Canine Sino-Nasal Aspergillosis

    Full text link
    Various combinations of tests are used to confirm the diagnosis of canine sino-nasal aspergillosis (SNA) because false-positive and false-negative results can occur with each test. Therefore, the aim of this study was to evaluate whether detection of fungal DNA in blood and nasal tissue samples was of value in the clinical diagnosis of this disease. Four groups were included in the study (dogs with SNA, lymphoplasmacytic rhinitis or nasal neoplasia, and control animals). Real-time PCR assays detecting DNA from all Penicillium and Aspergillus species (PenAsp assay) or species-specific DNA from A. fumigatus, A. terreus, A. flavus and A. niger were applied to whole blood and nasal tissue samples. Results obtained by PCR were compared between the groups. Sensitivity, specificity, positive and negative predictive values (PPV and NPV) for fungal DNA detection were compared with those for alternative diagnostic procedures including histopathology, serology and fungal culture. Significantly more fungal DNA was detected by the PenAsp assay in tissue biopsies from dogs with SNA than in the three other groups. Sensitivity, specificity, PPV and NPV for this method were 1.00, 0.06, 0.32 and 1.00. A. fumigatus DNA was detected in seven tissue biopsies from dogs with SNA and in one biopsy from a dog with a nasal tumour. Sensitivity, specificity, PPV and NPV for this diagnostic test were 0.50, 0.97, 0.87 and 0.82. No significant difference was found between the groups with respect to the amount of DNA detected in blood by the PenAsp assay. Sensitivity, specificity, PPV and NPV for this method were 0.71, 0.24, 0.31 and 0.64. A. fumigatus DNA was detected in the blood of three dogs with SNA and sixteen dogs without SNA. Sensitivity, specificity, PPV and NPV for this diagnostic tool were 0.21, 0.45, 0.15 and 0.54. Detection of A. fumigatus DNA in nasal tissue had the highest specificity, PPV and NPV but sensitivity of this method was low. Detection of fungal DNA in whole blood was of no value in the diagnosis of SNA
    corecore